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Abstract

The paper presents a modification of the classical boundary integral equation method (BIEM) for two-dimensional

potential boundary values problems. The proposed modification consists in describing the boundary geometry by

means of B�eezier curves. As a result of this analytical modification of the BIEM, a new parametric integral equation

system (PIES) was obtained. The kernels of these equations include the geometry of the boundary. This new PIES is no

longer defined on the boundary, as in the case of the BIEM, but on the straight line for any given domain. The solution

of the new PIES does not require a boundary discretization since it can be reduced merely to an approximation of

boundary functions. To solve this PIES a pseudospectral method has been proposed and the results obtained were

compared with exact solutions.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Currently there exist two methods commonly used for the numerical solution of boundary problems. One

is the finite element method and the other, developing dynamically in recent times, the boundary element

method (BEM). In the former method the whole domain of the problem is discretized by finite elements

(Zienkiewicz, 1977), whereas in the latter only the domain boundary is discretized by boundary elements

(Beer and Watson, 1992; Beskos, 1987; Brebbia et al., 1984).
To increase the accuracy of the description of the boundary geometry various boundary elements were

introduced. In paper (Camp and Gipson, 1991; Jonston, 1996) Overhauser elements were introduced to

ensure the required continuity at the points of their joins. In papers (Jonston, 1997; Liggett and Salmon,

1981; Sen, 1995) boundary elements were described by means of spline functions, whereas in (Durodola and
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Fenner, 1990; Gray and Soucie, 1993; Singh and Kalra, 1995) Hermite polynomials were used. Generally,

boundary elements are characterized by a necessity of simultaneous approximation of the boundary geo-

metry and boundary functions.

The necessity of simultaneous approximation mentioned above constitutes a serious problem from the
point of view of the possibility of an effective boundary modification as well as application of other methods

of the approximation of boundary functions.

A new system of integral equations was proposed in papers (Zieniuk, 1998; Zieniuk and Szczebiot, 1999)

in which the boundary geometry approximation is separated from boundary functions. This system was

obtained as a result of an analytical modification of the classical boundary integral equation method

(BIEM) by Fourier transformations. The system may be applied to solve potential boundary-value

problems with the domains bounded by polygons. In this system polygon segments are described by non-

parametrical linear functions, whereas in paper (Zieniuk, 1999) non-linear segments are described by non-
parametrical polynomials of the third degree. However, from a practical point of view, segment description

by means of non-parametrical functions is still troublesome. It was necessary to set the polygon with respect

to the assumed system of co-ordinates in such a way that all its segments projected as sections on one of the

axis. This is due to the fact that the system of integral equations is no longer defined on the boundary as a

classical BIEM but only on one of the axis of the assumed system of co-ordinates.

In paper (Zieniuk, 2001, 2002), parametric linear functions were proposed to describe the segments. Such

a description is more effective because it is not directly connected with the system of co-ordinates. The

parametric integral equation system (PIES) thus obtained is no longer defined on the axis of the assumed
system of co-ordinates but on the straight line exclusively. The length of this line is equal to the polygon

periphery. Information on the boundary line segments is contained in the PIES kernels.

In the present paper B�eezier parametrical segments are proposed to describe non-linear segments of the

boundary geometry. Such segments are commonly used in computer graphics (Mortenson, 1985; Faux and

Pratt, 1979; Rogers and Adams, 1976) to create B�eezier curves. These curves are very effective since they

enable an easy modification of the boundary geometry with the help de B�eezier control points and also make

it possible to ensure the required continuity. Closed curves can be used to describe the boundary geometry

in boundary-value problems. By introducing these curves into the classical BIEM we obtain a new PIES
whose formalism takes the boundary geometry into consideration. This boundary is described by B�eezier
curves. The PIES thus obtained facilitates the creation and modification of the boundary geometries with

the help of de B�eezier control points.
In this paper the BIEM modification is exemplified by Laplace�s equation as a particular case of potential

problem. The proposed concept can be also applied to other potential equations. The PIES solution (unlike

the classical BIEM) does not require an approximation of the boundary geometry but is reduced exclusively

to the approximation of the boundary functions. The separation of the simultaneous approximation of the

boundary geometry from the boundary functions in the PIES creates new possibilities of using various
methods of the numerical solutions of the PIES (Zieniuk and Szczebiot, 1999). To solve this new PIES a

pseudospectral method (PM) was proposed (Gottlieb and Orszag, 1977). The numerical results obtained

from the testing example were compared with exact results.

2. B�eezier curves used to describe boundary geometry

2.1. Cubic segment in B�eezier representation

B�eezier parametric cubic segment is a polynomial curve of the third degree described by four B�eezier
control points V0, V1, V2, V3. These points enable us to create segment shapes. A graphical presentation of
such a segment is shown in Fig. 1.
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The cubic segment using the B�eezier control points is represented with the help of vector equation

(Mortenson, 1985).

SpðsÞ ¼ V0ð1� sÞ3 þ V13sð1� sÞ2 þ V23s2ð1� sÞ þ V3s3; Sp ¼ ½Sð1Þ
p ; S2Þ

p �
T
; ð1Þ

or in a simplified form

SpðsÞ ¼
X3

j¼0

V j � Bj;3ðsÞ; 06 s6 1; ð2Þ

where the polynomials

Bj;3ðsÞ ¼
3!

j!ð3� jÞ! ð1� sÞ3�jsj; 06 s6 1; 06 j6 3; ð3Þ

are Bernstein base functions of the third degree. These functions are shown in Fig. 2.

Fig. 2. Bernsten base functions of the third degree.

Fig. 1. Cubic segment in the B�eezier representation.
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By differentiating the B�eezier representation (1) we can present the first derivative at the segment ends

using B�eezier control points as:

S0
pð0Þ ¼ 3ðV1 � V0Þ;

S0
pð1Þ ¼ 3ðV3 � V2Þ:

ð4Þ

The cubic segment is represented with the help four B�eezier control points only (1). By increasing the

number of the control points we obtain polynomial segments of any degree. With the help of nþ 1 control

points we can define the polynomial segment SpðsÞ of pth degree. Using control points we can easily change

the polynomial degree. Thus, for n ¼ 3 we obtain a cubic segment, a parabolic one for n ¼ 2, and for n ¼ 1

the segment is reduced to the straight line.

2.2. C1-B�eezier curves composed of cubic segments

By joining B�eezier segments, it is possible to define a curve described by a series of B�eezier control points. A
graphical presentation of such a curve is given in Fig. 3. Removing the control points brings about local

changes of the curve shape.

Let control points, V0, V1, V2, V3 and V

0, V



1, V



2, V



3 denote B�eezier control points for two adjacent cubic

segments SpðsÞ and Spþ1ðsÞ which should be joined in such a way as to obtain a C1-curve at the join point

V3 ¼ V

0. It follows from the continuity requirement that condition (5) must be satisfied:

S 0
pþ1ð0Þ ¼ S0

pð1Þ: ð5Þ

Hence, from the formulas (4) determining the first derivative we obtain the condition

V

1 � V


0 ¼ V3 � V2; ð6Þ

i.e. the control points V2 ¼ V

1 must be symmetrical with respect to V3 ¼ V


0. A graphical interpretation of
formula (6) is shown in Fig. 4.

Fig. 3. B�eezier curve composed of cubic segments.
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2.3. C2- B�eezier curves composed of cubic segments

The curves described by C2 equation are the curves composed of segments in such a way that the first and

second derivative of the equation are continuous at the points of segment joins. Let the segments to be

joined in this way be described by the control points as above.

The conditions to be satisfied can be written as follows:

1. Curve continuity condition

V

0 ¼ V3: ð7Þ

2. Continuity condition of the first derivative at the point of segment joins

V

1 � V


0 ¼ V3 � V2: ð8Þ

3. Continuity condition of the second derivative of the point of segment joins

S 00
pþ1ð0Þ ¼ S00

pð1Þ: ð9Þ
Since

S00
pþ1ð0Þ ¼ 6ðV


0 � 2V

1 þ V


2Þ;
S00

pð1Þ ¼ 6ðV1 � 2V2 þ V3Þ;
ð10Þ

and taking conditions (7) and (8) into account we obtain

V2 þ ðV2 � V1Þ ¼ V

1 þ ðV


1 � V

2Þ: ð11Þ

Point V2 þ ðV2 � V1Þ ¼ V

1 þ ðV


1 � V

2Þ is called de Boor�s control point (Mortenson, 1985). A geometric

interpretation of condition (11) is presented in Fig. 5.

By an appropriate selection of B�eezier control points, we can easily join segments ensuring C1 and C2

continuity. Fig. 6 shows a graphical presentation of a closed curve of C2.

The closed curve presented in Fig. 6 can be used to effectively describe the boundary geometry in BIEM.
For this purpose it is necessary to modify the classical integral equations.

Fig. 4. Continuity condition of C1-curve composed of B�eezier segments.
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3. Modification of the boundary integral equation

The boundary integral identity may be presented by means of a general formula (Green�s formula) in the

following form (Brebbia et al., 1984)

�uuðxÞ ¼
Z

C
U 
ðx; yÞpðyÞdCðyÞ �

Z
C
P
ðx; yÞuðyÞdCðyÞ; ð12Þ

where

�uuðxÞ ¼
uðxÞ for x 2 X
0:5uðxÞ for x 2 C
0 for x 62 X

; pðyÞ

8<: 
 ouðyÞ
onðyÞ and P
ðx; yÞ 
 oU 
ðx; yÞ

onðyÞ :

Fig. 6. Definition of boundary geometry with the B�eezier curve.

Fig. 5. Continuity condition C2 for B�eezier curve.
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If x 2 C then the Green�s formula (12) is the boundary integral equation (BIE). In the identity (12), an

integrand U 
ðx; yÞ is the classical fundamental solution, whereas P 
ðx; yÞ is the classical singular solution.

In order to modify Green�s formula the Fourier transform was applied and after its application to (12) we

obtained the following transform (Zieniuk, 1998, 1999, 2001)

�̂uu�uuðnÞ ¼ D�1ðnÞf~ppðnÞ þ i½n1~uu~nn1ðnÞ þ n2~uu~nn2ðnÞ�g; ð13Þ

where D�1ðnÞ ¼ ½n2
1 þ n2

2�
�1
.

In formula (13) the boundary is defined by means of the following boundary integrals:

~ppðnÞ ¼
Z

C
e�iðn1y1þn2y2ÞpðyÞdCðyÞ; ð14Þ

~uu~nnmðnÞ ¼
Z

C
e�iðn1y1þn2y2ÞnmðyÞuðyÞdCðyÞ; m ¼ 1; 2; y 2 C; ð15Þ

whereas, nm is a directional cosine of the normal vector to the boundary C. The integrals (14) and (15) will

be defined as boundary transforms.

We use the integral (15) to define the function transform ~uu~nnmðnÞ on the boundary C. The unknown in-

tegrand uðyÞ in (15) may be defined by means of the following Fourier formula:

uðyÞ ¼ 1

4p2

Z
R2

eiðx1y1þx2y2ÞûuðxÞdx; x 
 ðx1;x2Þ; ð16Þ

where the integrand ûuðxÞ is given by

ûuðxÞ ¼ 2D�1ðxÞf~ppðxÞ þ i½x1~uu~nn1ðxÞ þ x2~uu~nn2ðxÞ�g: ð17Þ

The formula (17) is a particular case of the transform (13).

4. Transform of the integral equation system

After substituting (17) into (16)––and then the resulting expression into (15)––we get the convolution

integral equation in the domain of Fourier transforms,

~uu~nnmðnÞ ¼
Z
R2

eKKmðc1; c2ÞD�1ðxÞf~ppðxÞ þ i½x1~uu~nn1ðxÞ þ x2~uu~nn2ðxÞ�gdx; ð18Þ

where the kernel is

eKKmðc1; c2Þ ¼
1

2p2

Z
C
eiðc1y1þc2y2ÞnmðyÞdCðyÞ; ci ¼ xi � ni: ð19Þ

The contour integral in (19) takes into consideration the boundary geometry of C. In our further con-

siderations we divide the boundary C into n non-linear segments.

Therefore, after taking into consideration the segmental representation of the boundary, we may present

the kernel (19) as

eKKmðc1; c2Þ ¼
1

2p2

Xn

l¼1

Z
Cl

eiðc1y1þc2y2ÞnðlÞm ðyÞdCðyÞ; ð20Þ

whereas the boundary transforms ~uu~nnmðnÞ occurring on the left hand side of (18) may be represented in the

following form:
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~uu~nnmðnÞ ¼
Xn

l¼1

~uul~nnðlÞm ðnÞ: ð21Þ

We mark the boundary transforms ~ppðxÞ and ~uu~nnmðxÞ on individual segments on the right hand side of (18)

by the index j in the following way

~ppðxÞ ¼
Xn

j¼1

~ppjðxÞ; ~uu~nnmðxÞ ¼
Xn

j¼1

~uuj~nnðjÞm ðxÞ: ð22Þ

After substituting (21), (22) and (20) in (18) we obtain the following system of the convolution integral

equations:

~uul~nnðlÞm ðnÞ ¼
Z
R2

eKKmðc1; c2Þ
Xn

j¼1

D�1ðxÞ ~ppjðxÞ
n

þ i x1~uuj~nn
ðjÞ
1 ðxÞ

h
þ x2~uuj~nn

ðjÞ
2 ðxÞ

io
dx; ð23Þ

where

eKKmðc1; c2Þ ¼
1

2p2

Z
Cl

eiðc1y1þc2y2ÞnðlÞm ðyÞdCðyÞ; l ¼ 1; 2; . . . ; n: ð24Þ

These boundary transforms on individual segments in (23) may be defined as follows:

~ppjðxÞ ¼
Z

Cj

e�iðx1y1þx2y2ÞpjðyÞdCðyÞ; ð25Þ

~uup~nnðpÞm ðxÞ ¼
Z

Cp

e�iðx1y1þx2y2ÞnðpÞm ðyÞupðyÞdCðyÞ; x ¼ n; p ¼ l; j: ð26Þ

We shall define the segments (Cp 
 Sp) with the help of Bezier representation (1). The modelling of the
segments within the boundary geometry is presented in Fig. 6.

The kernel (24) for the boundary segments in the B�eezier representation is described by the following

formula

eKKmðc1; c2Þ ¼
1

2p2

Z sl

sl�1

ei c1S
ð1Þ
l ðsÞþc2S

ð2Þ
l ðsÞ½ �JlðsÞnmðsÞds; sl�1 6 s6 sl; ð27Þ

where

JlðsÞ ¼
oy1
os

� �2
"

þ oy2
os

� �2
#0:5

; y1 ¼ S
ð1Þ
l ðsÞ; y2 ¼ S

ð2Þ
l ðsÞ:

The segmental transforms ~ppjðxÞ, ~uup~nnðpÞm ðxÞ after considering B�eezier segments have following form

~ppjðxÞ ¼
Z sj

sj�1

e�i x1S
ð1Þ
j ðsÞþx2S

ð2Þ
j ðsÞ½ �pjðsÞJjðsÞds;

~uup~nnðpÞm ðxÞ ¼
Z sp

sp�1

e�i x1S
ð1Þ
p ðsÞþx2S

ð2Þ
p ðsÞ½ �upðsÞnðpÞm ðsÞJpðsÞds; x ¼ n; p ¼ l; j;

ð28Þ

where

pjðsÞ ¼ pj Sð1Þ
j ðsÞ; Sð2Þ

j ðsÞ
h i

; nðpÞm ðsÞ ¼ nðpÞm Sð1Þ
p ðsÞ; Sð2Þ

j ðsÞ
h i

; upðsÞ ¼ up Sð1Þ
p ðsÞ; Sð2Þ

p ðsÞ
h i

:

The cubic segment SpðsÞ is given by the expression (1).

2308 E. Zieniuk / International Journal of Solids and Structures 40 (2003) 2301–2320



5. New parametric integral equation system

After substituting (28) and (27) into (23) we obtain the convolution integral equation in the domain of

the Fourier transforms. After the application of the inverse of the Fourier transform a new PIES is ob-
tained (Zieniuk, 1998, 1999, 2001)

0:5ulðs1Þ ¼
Xn

j¼1

Z sj

sj�1

U


ljðs1; sÞpjðsÞ

n
� P



ljðs1; sÞujðsÞ

o
JjðsÞds; sj�1 < s1; s < sj: ð29Þ

The kernels in the above system are functions U


ljðs1; sÞ and P



ljðs1; sÞ given by the following integral ex-

pression:

U


ljðs1; sÞ ¼

1

4p2

Z
R2

eiðx1g1þx2g2ÞD�1ðxÞdx; ð30Þ

P


ljðs1; sÞ ¼

�i
4p2

Z
R2

eiðx1g1þx2g2ÞD�1ðxÞ½x1n
ðjÞ
1 ðsÞ þ x2n

ðjÞ
2 ðsÞ�dx: ð31Þ

After calculation of the relatively complex integrals (30) and (31) we obtain the final expressions in the

following form:

U


ljðs1; sÞ ¼

1

2p
ln

1

½g2
1 þ g2

2�
0:5

; ð32Þ

P


ljðs1; sÞ ¼

1

2p
g1n

ðjÞ
1 ðsÞ þ g2n

ðjÞ
2 ðsÞ

g2
1 þ g2

2

; ð33Þ

where g1 ¼ Sð1Þ
l ðs1Þ � Sð1Þ

j ðsÞ and g2 ¼ Sð2Þ
l ðs1Þ � Sð2Þ

j ðsÞ.
The expression (32) is a modified fundamental solution called the boundary fundamental solution,

whereas, expression (33) is a modified singular solution called the boundary singular solution. These ex-

pressions constitute the modified fundamental and singular solution of the Laplace�s equation. The modi-

fied solutions (32) and (33) take into account the boundary geometry in contrast to traditional solutions.

The PIES is defined for any given configuration of the boundary geometry on the straight line in a

parametrical reference system. The length of the line is depend on the length of the boundary.

6. Solution in domain

Solution in domain X may be obtained from the transform presented by formula (13)

�̂uu�uuðnÞ ¼ D�1ðnÞf~ppðnÞ þ i½n1~uu~nn1ðnÞ þ n2~uu~nn2ðnÞ�g: ð34Þ
In this identity, we present the boundary integrals ~ppðnÞ; ~uu~nnmðnÞ, m ¼ 1, 2 by means of segmental integrals

(22), in which the variable x is replaced by n. In the local system of co-ordinates the integrals may be

presented in the following way

~ppjðnÞ ¼
Z sj

sj�1

e�i n1S
ð1Þ
j ðsÞþn2S

ð2Þ
j ðsÞ½ �pjðsÞJjðsÞds;

~uuj~nnðjÞm ðnÞ ¼
Z sj

sj�1

e�i n1S
ð1Þ
j ðsÞþn2S

ð2Þ
j ðsÞ½ �nðjÞm ðsÞujðsÞJjðsÞds:

ð35Þ
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After substituting (35) to (34) and after the application of the inverse Fourier transform we obtain

uðxÞ ¼
Xn

j¼1

Z sj

sj�1

bUU 

j ðx; sÞpjðsÞ

n
� bPP 


j ðx; sÞujðsÞ
o
JjðsÞds; ð36Þ

where integrands are represented by

bUU 

j ðx; sÞ ¼

1

4p2

Z
R2

eiðn1 r
$

1þn2 r
$

2ÞD�1ðnÞdn; ð37Þ

bPP 

j ðx; sÞ ¼

�i
4p2

Z
R2

eiðn1 r
$

1þn2 r
$

2ÞD�1ðnÞ n1n
ðjÞ
1 ðsÞ

h
þ n2n

ðjÞ
2 ðsÞ

i
dn: ð38Þ

After calculation of relatively complex integrals (37) and (38) we obtain expressions in the following

explicit form

bUU 

j ðx; sÞ ¼

1

2p
ln

1

½ r$
2

1 þ r
$2

2�
0:5

; ð39Þ

bPP j

ðx; sÞ ¼ 1

2p
r
$

1n
ðjÞ
1 ðsÞ þ r

$
2n

ðjÞ
2 ðsÞ

r
$2

1 þ r
$2

2

; ð40Þ

where r
$
1 ¼ x1 � Sð1Þ

j ðsÞ and r
$
2 ¼ x2 � Sð2Þ

j ðsÞ.
The former expression (39) is a modification of the fundamental Laplace�s solution and can be called a

fundamental solution in the domain. The latter expression (40) can be called a singular solution in the domain.

These modifications take into account the boundary geometry defined by means of B�eezier curves.

7. Numerical solution

The PSIE solution does not require the discretization of the boundary and it reduces exclusively to the

approximation of boundary functions ujðsÞ, pjðsÞ on individual segments. For the solution (29)––the PM

(Zieniuk and Szczebiot, 1999; Gottlieb and Orszag, 1977) is applied. The boundary functions are ap-
proximated by means of the following expressions

pjðsÞ ¼
XN
k¼0

pðkÞj T ðkÞ
j ðsÞ; ujðsÞ ¼

XN
k¼0

uðkÞj T ðkÞ
j ðsÞ; ð41Þ

where uðkÞj , pðkÞj are unknown coefficients, N––is a number of coefficients on segment, and T k
j ðsÞ are the global

base functions on individual segments––Chebyshev polynomials.

Inserting (41) into (29) we obtain the equation which reduces to a system of algebraic equations in respect

to the unknown coefficients.

0:5ulðs1Þ ¼
Xn

j¼k

XN
k¼0

pðkÞj

Z sj

sj�1

U


ljðs1; sÞ

(
� uðkÞj

Z sj

sj�1

P


ljðs1; sÞ

)
T ðkÞ
j ðsÞJjðsÞds: ð42Þ

Eq. (42), having been represented at collocation points (n� N ) reduces to a system of algebraic equations

with respect to the unknown coefficients pðkÞj or uðkÞj . On solving the system of algebraic equations and

having made use of approximating expressions (41) we obtain the unknown functions on boundary Cp.
Having found the functions on the boundary we can obtain the solution in domain X on the basis of the

integral identity (36).

2310 E. Zieniuk / International Journal of Solids and Structures 40 (2003) 2301–2320



8. Practical application of the method

Five different testing examples illustrating the accuracy and effectiveness of the proposed method com-

pared with other well-known analytical and numerical methods are presented. When comparing the results
special attention was paid to:

• number of input data necessary to define the problem for each of the numerical methods used,

• accuracy of the obtained results in comparison with exact solutions,

• number of algebraic equation system required.

The first testing example is concerned with temperature distribution in a cylinder of infinite length. The

main purpose of the example is to show the effectiveness of defining boundary geometry by B�eezier control
points in contrast to BEM. The accuracy of the obtained results is compared with the results obtained by

BEM and the analytical method.

The second testing example illustrates a possibility of defining boundary geometry by curvilinear seg-

ments and also by B�eezier segments of the first degree. In this example temperature distribution in a living

room defined by a small number of corner points is analyzed. The obtained results are compared with

solutions obtained by well-known methods (Hartmann, 1989).

The next two examples deal with an analysis of twisted bars of various cross-sections. In the third ex-

ample, a triangular cross-section defined by first degree segments is considered. The fourth example gives an
analysis of an elliptical cross-section whose boundary geometry is defined by third degree B�eezier curves.

The obtained results are compared with other well-known numerical and analytical methods.

The fifth testing example illustrates some possibilities of defining various types of boundary geometries.

In this example boundary geometry is defined by first and third degree segments.

8.1. Example 1: Temperature distribution in the cylinder

Temperature distribution in a cylinder of infinite length and radius R is shown in Fig. 7. We need to find

steady temperature field in the cylinder. The problem can be described by

Fig. 7. Cylinder geometry of infinite length with a given temperature on its surface.
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o2u
or2

þ 1

r
ou
or

þ 1

r2
o2u

oh2
¼ 0; ð43Þ

i.e. by the Laplace�s equation (Brebbia et al., 1984) in a polar coordinate system with the following

boundary conditions

uðR; hÞ ¼ u ¼ 1:0; 06 h6 p
u ¼ 0:0; p < h < 2p

�
: ð44Þ

The analytical solution is

uðR; hÞ ¼ 1

2
þ 2

X1
n¼1

1

pn
r
R

� �n
sin nh; n ¼ 1; 3; 5; ð45Þ

A practical way of defining boundary geometries by third degree B�eezier curves is shown in Fig. 8. To give
a relatively exact description of the boundary only four segments of the third degree S1, S2, S3, S4 are re-

quired and to define the segments we need 12 B�eezier control points (see Fig. 8). Four of them, V0, V3, V6, V9,
that lie on the boundary are interpolating points, whereas the remaining eight points (not lying on the

boundary) are approximating points. However, to define boundary geometry by B�eezier curves all of these
points must be given.

For a practical definition of boundary geometry only 4 points V0 ¼ P0, V3 ¼ P1, V6 ¼ P2, V9 ¼ P3 lying on

the boundary are given, whereas the remaining missing control points are determined numerically after

solving a system of algebraic equations. This system is obtained under the condition that the segments at
their join points, P0, P1, P2, P3, keep continuity class C2.

The solution on the boundary for boundary problem (43) can be obtained using PIES represented by (29)

and the solution in domain X by (36). The obtained results for U ¼ R ¼ 1 at points 1–8 inside the cylinder

(see Fig. 8) are compared with the results in (Brebbia et al., 1984) obtained by the use of constant elements.

The results are shown in Table 1.

As seen in Table 1, to obtain near-analytical solutions, in the case of BEM, it is necessary to use as many

as 48 constant elements. It means that we need to give as many as 48 nodes on the boundary and also solve

Fig. 8. Definition of the cross-section of the boundary geometry by B�eezier control points.
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48 algebraic equations. It must be also noted that the condition of continuity C2 at the join points of the
boundary elements is not satisfied.

Using PIES and formula (36) high accuracy (see Table 1) was obtained by defining the boundary using

merely four points (P0; P1; P2; P3) and solving a system of only eight algebraic equations. A smaller number

of input data required for the definition of the problem as well as a smaller system of algebraic equations to

be solved, considerably shortens the computation time as compared to BEM. If we take high accuracy of

the obtained results in this example and compare them with the exact solution, it can be stated that the

proposed method is very effective.

8.2. Example 2: Temperature distribution in L-shaped living room

It is very effective to define boundary geometry by B�eezier curves as they can be easily described by

polynomials of any given degree. Increasing or decreasing polynomial degrees practically reduces to either

addition or subtraction of B�eezier points. Due to the above it is possible to use PIES to solve boundary

problems with boundaries modelled by curves described by either high or low degree polynomials.

In this example, B�eezier segments of the first degree are used to solve a polygon domain problem that is

reduced to determining temperature distribution in an L-shaped living room (see Fig. 9). The walls of the

Table 1

Temperature at points inside the cylinder

Points BEM (Brebbia et al., 1984) Analytical solutions PIES, N ¼ 2

24 elements 48 elements

1 2 3 4 5

1 0.500 0.500 0.500 0.50000

2 0.799 0.796 0.795 0.79535

3 0.776 0.774 0.773 0.77301

4 0.689 0.688 0.687 0.68751

5 0.500 0.500 0.500 0.50000

6 0.311 0.312 0.313 0.31248

7 0.224 0.226 0.227 0.22691

8 0.201 0.204 0.205 0.20464

Fig. 9. Temperature distribution in an L-shape domain. Domain defined by points.
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living room are considered to be perfectly isolated so that the flux at the walls is zero, i.e., oT=on ¼ 0. The

temperature of the window panes is assumed to 10 �C and the temperature of the chimney at the upper end

of the living room is assumed to be 50 �C. The temperature distribution T in the living room is the function

that satisfies boundary conditions and the Laplace equation, i.e.,

o2T
ox21

þ o2T
ox22

¼ 0 in X: ð46Þ

Fig. 9 presents the defining of the living room geometry by first degree B�eezier curves. The task is

practically reduced to giving a small number of B�eezier control points. These points, for linear segments, are

the living room corner points, P0, P3, P4, P5, P6, P7. Due to the fact that there are different boundary

conditions imposed along some of the walls, it is necessary to introduce additional points P1, P2, P8, P9 (see
Fig. 9), at which changes of the types of boundary conditions take place. To give an exact definition of the

room domain as well as the boundary conditions only 10 points are required. Hence the boundary was

divided into n ¼ 10 line segments.
This example was solved by quadrature element method (Zhong and He, 1998) and BEM (Hartmann,

1989) and also by PIES using different numbers of expressions N of the approximating series (41). Fig. 10

gives the results obtained at various living room points using different methods.

8.3. Example 3: Torsion of a bar of a triangular cross-section

In this testing example PIES was used for analysing the stress field at various points of a twisted bar of

triangular cross-section (Fig. 11). Such a cross-section can be easily defined by first degree B�eezier points

using only three corner points, P0, P1, P2. To solve the same problem by BEM we need to give many more

nodes.

The problem prismatic bar torsion can be solved by resolving the Laplace�s equation using the following

boundary conditions

uðxÞ ¼ x21 þ x22
2

: ð47Þ

An exact solution for function uðxÞ resulting from the resolution of the Laplace�s equation and shear

stresses in the considered cross-section, is represented by formulas (Hromadka and Lai, 1987)

uðxÞ ¼ ðx31 � 3x1x22Þ=2aþ 2a2=27; ð48Þ

sx1x3 ¼ �lhðx2 þ 3x1x2=aÞ; ð49Þ

sx2x3 ¼ lh 3x22
��

� 3x21
�
=2aþ x1

�
: ð50Þ

Table 2 presents exact results for function uðxÞ calculated from formulas (48) and approximated results
ûuðxÞ obtained by a well-known numerical method––CBEM (Hromadka and Lai, 1987), and also by the

method proposed here, making use of PIES. Table 2 also includes relative errors jeuj ¼ jðu� ûuÞ=uj for
numerical methods.

It is evident that the proposed method enables us to calculate function ûuðxÞ with much greater accuracy

than CBEM.

The stress field was calculated using the same methods and the results obtained at particular points of the

triangular cross-section are shown in Table 3. Shear stresses calculated by a well-known numerical method

CBEM and the proposed method (based on PIES) were compared with exact solutions ((49) and (50)). The
comparison is presented in the form of a relative error shown in columns 5 and 10 for CBEM and columns

7 and 12 for PIES. As can be seen, stresses bssx1x3 , bssx2x3 were also calculated with high accuracy.
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8.4. Example 4: Torsion of a bar of elliptical cross-section

In this example, PIES is used for analysing stress states in a twisted bar of elliptical cross-section des-

cribed by

x21
a2

þ x22
b2

¼ 1: ð51Þ

To give a practical definition of such a cross-section for PIES we apply B�eezier curvilinear segments of the

third degree joined together and keeping continuity C2. Graphical representation of this cross-section and

the way of its definition is shown in Fig. 12. To define the geometry of the cross-section, it was necessary to
define merely four interpolating B�eezier points P0, P2, P4, P6. To obtain a very exact definition, it was enough

Fig. 10. Results for temperature distribution problem.
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to give additional four points P1, P3, P5, P7. Thus, to get a very exact boundary definition, a total eight
interpolating points were required. In comparison with BEM, this number is considerably smaller.

The problem is solved by the Laplace�s equation with boundary conditions (47). The analytical solutions

for functions uðxÞ resulting from the resolution of the Laplace�s equation and shear stresses in the con-

sidered domain, take the following form (Hromadka and Lai, 1987)

uðxÞ ¼ ðx21 þ x22Þ=2� a2b2
x21
a2

�
þ x22
b2

� 1

��
ða2 þ b2Þ;

sx1x3 ¼ �lh2x2a2=ða2 þ b2Þ; ð52Þ

sx2x3 ¼ lh2x1b2=ða2 þ b2Þ:

Table 4 presents exact solutions for function uðxÞ and approximated results ûuðxÞ. The table also gives
shear stresses bssx1x3 , bssx2x3 at different points of the cross-section obtained by PIES for a ¼ 2, b ¼ 1.

Table 2

Comparison of exact and approximated solutions

x1 x2 u-analyt ûu-CBEM jeuj (%) CBEM ûu-PIES jeuj (%) PIES

1 2 3 4 5 6 7

)0.50 0.0 0.64583 0.6557 1.53 0.64585 0.00310

)0.0 0.0 0.66667 0.6763 1.44 0.66668 0.00150

0.5 0.0 0.68750 0.6969 1.37 0.68751 0.00145

1.0 0.0 0.83333 0.8417 1.01 0.83336 0.00360

1.5 0.0 1.22917 1.2302 0.08 1.22809 0.08786

)0.50 0.50 0.70833 0.7180 1.36 0.70833 0.00000

0.0 0.50 0.66666 0.6763 1.44 0.66668 0.00300

0.5 0.50 0.62500 0.6347 1.55 0.62443 0.09120

)0.50 1.0 0.89583 0.9046 0.98 0.89594 0.01228

Fig. 11. Definition of cross-section by corner points.
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The results presented in Table 4 show that the approximation of both function ûuðxÞ and shear stressesbssx1x3 , bssx2x3 was obtained with great accuracy.

8.5. Example 5: Complex boundary geometry

In the fifth example we present some possibilities of defining various boundary geometry by B�eezier curves
using polynomials of different degrees. In this example, boundary geometry is described by segments of the

first and third degree.
The example considers a problem of two-dimensional steady fluid flow (in the x1-direction) between

parallel walls with a cylinder as an obstacle, as shown in Fig. 13. By using centreline symmetry and mid-

stream antisymmetry, only a quarter of domain marked abcde need be analysed (Durodola and Fenner,

1990). Boundary conditions are imposed in terms of a stream function u.
To ensure a very accurate definition of this domain, it is necessary to give merely six boundary points Pi,

i ¼ 0; 1; . . . ; 5. The results of the proposed method are shown in Table 5. They have been compared with the

known examples obtained by BEM for various boundary elements. In paper Durodola and Fenner (1990)

to solve Example 5 Hermitian cubic elements (HCE) are used for various numbers of posed nodes, whereas
in Alarcon et al. (1979) Lagrange quadratic elements are applied.

Table 3

Comparison of exact and approximated solutions

x1 x2 sx1x3
analytic

bssx1x3
CBEM

jesx1x3
j

(%)

CBEM

bssx1x3 PIES jesx1x3
j

(%)

PIES

sx2x3
analytic

bssx2x3
CBIE

jesx2x3
j

(%)

CBIE

bssx2x3
PIES

jesx2x3
j

(%)

PIES

1 2 3 4 5 6 7 8 9 10 11 12

)0.5 0.0 0.0 0 – 4.223e)16 – )0.625 )0.63 0.80 )0.62468 0.0512

)0.0 0.0 0.0 0 – 1.761e)16 – 0.0000 0.0 0.0 0.0 0.0

0.5 0.0 0.0 0 – 3.936e)16 – 0.3750 0.37 1.33 0.37500 0.0000

1.0 0.0 0.0 0 – 1.197e)15 – 0.5000 0.50 0 0.49951 0.0980

1.5 0.0 0.0 )0.01 – )1.41e)15 – 0.3750 0.37 1.33 0.35274 5.9360

)0.5 0.5 )0.25 )0.25 0.0 )0.24971 0.1160 )0.500 )0.49 2.00 )0.50024 0.0480

0.0 0.5 )0.50 )0.50 0.0 )0.49991 0.0180 0.1250 0.12 4.00 0.12503 0.0240

0.5 0.5 )0.75 )0.75 0.0 )0.76496 1.9947 0.5000 0.50 0 0.49834 0.3320

)0.5 1.0 )0.50 )0.50 0.0 )0.49961 0.0780 )0.125 )0.13 4.0 )0.12761 2.0880

Fig. 12. Boundary definition by B�eezier control points.
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On the basis of the examples presented in Section 8, it can be noted that the proposed method, in contrast
to well-known numerical methods, proved more effective because it requires a smaller number of input date

and it is reduced to solving a smaller number of algebraic equations.

The effectiveness of the proposed method was tested on the examples taken from the literature quoted.

They allowed us to compare only the accuracy of calculations and the number of the input data required to

define the problem. However, the results given in the literature did not allow us to compare the compu-

Table 4

Comparison of exact and approximated solutions

x1 x2 u analytic ûu-PURC jeuj (%) sx1x3
analytic

bssx1x3 PURC jesx1x3
j

(%)

sx2x3
analytic

bssx2x3

PURC

jesx2x3
j

(%)

1 2 3 4 5 6 7 8 9 10 11

0.0 0.0 0.80000 0.80039 0.04850 0.0 )6.00e)08 – 0.000 1.291e)08 –

0.5 0.0 0.87500 0.87528 0.03154 0.0 2.079e)07 – 0.200 0.20060 0.29950

1.0 0.0 1.10000 1.09954 0.04182 0.0 4.175e)07 – 0.400 0.40258 0.64475

1.5 0.0 1.47500 1.47285 0.14576 0.0 )4.35e)06 – 0.600 0.60311 0.51817

0.0 0.25 0.78125 0.78165 0.05171 )0.400 )0.39989 0.02650 0.000 )1.10e)07 –

0.25 0.25 0.80000 0.80040 0.04975 )0.400 )0.39977 0.05700 0.100 0.10007 0.06800

0.75 0.25 0.95000 0.95016 0.01726 )0.400 )0.39896 0.26075 0.300 0.30118 0.39500

1.25 0.25 1.25000 1.24885 0.09200 )0.400 )0.39902 0.24375 0.500 0.50429 0.85800

1.75 0.25 1.70000 1.69650 0.20588 )0.400 )0.40883 2.20850 0.700 0.70244 0.34886

0.0 0.50 0.72500 0.72542 0.05807 )0.800 )0.80004 0.00462 0.000 )1.83e)07 –

0.25 0.50 0.74375 0.74421 0.06225 )0.800 )0.79978 0.02800 0.100 0.09969 0.30810

0.75 0.50 0.89375 0.89431 0.06299 )0.800 )0.79784 0.26963 0.300 0.30034 0.11300

1.25 0.50 1.19375 1.19315 0.05026 )0.800 )0.79613 0.48375 0.500 0.50536 1.07240

0.0 0.75 0.63125 0.63160 0.05418 )1.200 )1.20071 0.05917 0.000 1.691e)08 –

0.25 0.75 0.65000 0.65047 0.07200 )1.200 )1.20031 0.02583 0.100 0.09903 0.97190

0.50 0.75 0.70625 0.70705 0.11285 )1.200 )1.19950 0.04167 0.200 0.19858 0.70850

0.75 0.75 0.80000 0.80114 0.14188 )1.200 )1.20100 0.08333 0.300 0.30248 0.82500

Fig. 13. Flow around a cylinder in an infinite field and the model with boundary conditions.
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tation time for each of the methods. Considering high effectiveness of the proposed method, further re-
search is being conducted to solve more complex problems including the computation time in comparison

with the traditional numerical methods.

9. Conclusion

In the paper an original PIES for solving of the boundary-value problems is presented with a special

application to effective numerical solutions.

The main results of the research work are as follows:

• Modification of classical BIE so as to arrive at the PIES, for which numerical solutions do not require

discretization of boundary and which reduce to approximation of boundary functions only.

• For the approximation of these boundary functions PM was proposed, which was shown to be very ef-

fective and gave, contrary to BEM, continuous solutions on individual segments of boundary.
• Such solutions make it possible to perform calculation, of unknown values at any chosen points on the

boundary without the necessity of solving algebraic equation systems again.

• In the new method to obtain a comparable accuracy as in BEM a smaller system of algebraic equations

has to be solved.

• Modification of the boundary geometry can be performed with the help of a small number of B�eezier con-
trol points.

• In the PIES an approximation of the boundary functions is not directly connected with boundary geo-

metry therefore its free modification does not have a direct influence on the algorithm of the boundary
function approximation.
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